

#### Welcome

Keith H. Talley, Sr., APCD
 Director



#### Introductions

 MPSG Co-chairs and Participants



### Ozone Formation Study

Courtney Taylor, Ramboll



# Fine Particulate Overview

 Michelle King, APCD, Director of Program Planning



### Particulate Matter (PM)

A complex mixture of particles and liquid droplets

found in the air

Categories:

Coarse Particles (PM<sub>10</sub>)

Fine Particles (PM<sub>2.5</sub>)

- Health effects:
- Aggravated asthma
- Decreased lung function
- Increased respiratory symptoms
- Irregular heartbeat
- Heart attacks





#### Particulate Matter (PM)



- Where do they come from?
  - Primary Emissions are directly emitted from a source
    - Coal-fired plants, industrial boilers, and construction sites, residential fireplaces
    - Commercial cooking, industrial processes, diesel engines
  - Secondary Emissions are formed when gases, such as SO<sub>2</sub> and NOx, react in the air
    - Coal-fired plants
    - Industrial processes
    - Gasoline and diesel engines



# Louisville's Fine Particulates Inventory





## Louisville's Fine Particulates Inventory

Point Sources, 2014 v. 2017





### Louisville's Fine Particulates Inventory

Point Sources, 2014 v. 2017





## Louisville's Fine Particulates History







#### Air Toxics Overview

 Rachael Hamilton, APCD, Assistant Director



#### What are Air Toxics?

- Air toxics are...
  - Hazardous Air Pollutants (HAPs)
    - Pollutants known/suspected to cause cancer or other serious health effects
  - Emitted from a variety of sources
    - E.g. cars, trucks buses, factories refineries, power plants, etc.
    - Can also come from natural sources (e.g. forest fires and volcanic eruptions)
- Exposure can occur in many ways
  - E.g. Breathing contaminated air, eating contaminated food products



# Toxics Release Inventory (TRI) Program

- Created by <u>EPCRA</u> (Section 313) in 1986
- Tracks the management of certain toxic chemicals that may pose a threat to human health and the environment
- U.S. facilities must report annually if:
  - Is in certain industries,
  - Has more than 10 full time employees, and
  - Manufactures, processes, or otherwise uses a TRI-listed chemical in quantities above threshold levels
- Report permitted and excess emissions releases to air, water, & land





#### National Air Toxics Assessment (NATA)

- Periodic national modeling of outdoor air toxics from all sources (2005, 2011, 2014)
- Designed to help reduce toxic air pollution and build on the large emissions cuts achieved in the United States since 1990
- Helps air quality scientists collect air toxics emissions data
  - and learn where health risks may be high
- A screening tool for state, local and tribal air agencies





#### Progress to Date: Total Health Risk

2005 v 2014 National Air Toxics Assessment







#### Progress to Date: Onroad Health Risk

2005 v 2014 National Air Toxics Assessment







#### Progress Remaining: Onroad Health Risk

2014 National Air Toxics Assessment – Onroad Risk v. Onroad Risk w/Diesel PM







# Progress to Date: Point Source Health Risk

2005 v 2014 National Air Toxics Assessment







# Progress Remaining: Environmental Justice

2014 National Air Toxics Assessment Point Risk v. 2010 Census Percent Minority







#### STAR Program Highlights

- Provides a framework for determining the environmental acceptability of toxics
- Requires companies to assess and address air toxics emissions
- Requires APCD to assess and address other sources toxic emissions









# Total Air Toxics 2000 to 2017







## Air Toxics / PAMS Monitoring









#### Air Toxics / PAMS Monitoring

- Traditional Method
  - Manual collection using canisters
  - Samples typically collected once every 6 or 12 days
  - Samples shipped to lab for analysis
  - Samples represents 24-hr period



- Modern Method
  - Automated Gas Chromatography
    - Two Auto GCs Dual FIDs
  - Samples collected every hour
  - Samples analyzed in near real time
  - Raw data available within the hour
  - While temporal resolution is improved, additional challenges exist





#### Air Toxics / PAMS Monitoring

- Auto GC technology is complex and produces large amounts of data
- APCD is the 2<sup>nd</sup> AQ agency in the country to operate Chromatotec Auto GC
- Continuous refinement of methodologies expected

 APCD staff have worked extensively with manufacturer and participated in national workgroup calls to improve/

refine method





# Introduction to Committees

 Michelle King, APCD, Director of Program Planning



#### **MPSG Committee Staff**

# Point Sources

Byron Gary, Regulatory Coordinator

> Area Sources

Jayme Csonka, Small Business Compliance Coordinator **Committee Focus Areas** 

Mobile Sources

Health

Byron Gary, Regulatory Coordinator & Torend Collins, Environmental Coordinator

Outreach and Education

Torend Collins, Environmental Coordinator

Bradley Coomes, Environmental Coordinator



#### **Point Source Committee Goals**

- Identify and assess sources and control measures currently in place or planned for ozone precursors at Point sources.
- Evaluate Ozone Formation Study modeling results to:
  - Identify additional possible voluntary control strategies for reaching attainment of the 8-hour Ozone NAAQS by 2021 deadline.
  - Evaluate possible additional control measures for informal RACT/RACM assessment.
- Evaluate the sufficiency of current regulations to meet the 2015
   8-hour Ozone Nonattainment Area SIP Requirements and consider and recommend updates to these rules.
- Assess recommended strategies for co-benefits to fine particulate and air toxic emission reductions.



#### **Area Source Committee Goals**

- Identify and assess sources and control measures currently in place or planned for ozone precursors at Area sources.
- Evaluate Ozone Formation Study modeling results to:
  - Identify additional possible voluntary control strategies for reaching attainment of the 8-hour Ozone NAAQS by 2021 deadline.
  - Evaluate possible additional control measures for informal RACT/RACM assessment.
- Evaluate the sufficiency of APCD compliance activities for area source emissions accountability (e.g., inspections, record keeping and reporting).
- Assess recommended strategies for co-benefits to fine particulate and air toxic emission reductions.



#### **Mobile Source Committee Goals**

- Identify and assess sources of ozone precursors for Mobile sources and control measures currently in place or planned.
- Review best practices from other cities and present case studies on how those cities reduced emissions from mobile sources.
- Evaluate potential localized mobile source exposures in congested areas or heavily travelled road segments.
- Look for additional strategies to reduce emissions within Louisville Metro Government's own fleet and other large fleets operating locally.
- Assess recommended strategies for co-benefits to fine particulate and air toxic emission reductions.



#### **Health Committee Goals**

- Identify health risks to Louisville Metro residents from exposure to ozone, fine particulates, and air toxics.
- Evaluate the potential for ozone, fine particulate, and air toxics reductions to improve health and monetize public health benefits where possible.
- Assess the disparate impacts of these pollutants on minority and low-income residents.
- Identify additional questions or areas of study to help inform the community on how to reduce exposure to air pollution and mitigate potential health impacts.



#### **Outreach & Education Committee Goals**

- Review current efforts to communicate Louisville's nonattainment status for ozone and recommend additional strategies to raise awareness of the need for air quality improvement.
- Identify audiences for sharing information and conducting more engagement around air quality and its impact on health.
- Propose community partnerships to promote air quality and environmental health awareness.
- Propose new programs that give citizens opportunity and information to reduce their own emissions contribution and health impacts from poor air quality.
- Support/amplify the messaging of other groups that promote lowering air emissions and limiting exposure to emissions.



# Discussion and Questions

All Attendees



#### Meeting Wrap-Up

• Steve Sullivan, MPSG Co-chair



# Thank you!



Louisville Metro Air Pollution Control District

701 W. Ormsby Ave. Ste. 303 Louisville, KY 40203 (502) 574-6000 www.louisvilleky.gov/APCD

